IMFNet: Interpretable Multimodal Fusion for Point Cloud Registration
نویسندگان
چکیده
The existing state-of-the-art point descriptor relies on structure information only, which omits the texture information. However, is crucial for our humans to distinguish a scene part. Moreover, current learning-based descriptors are all black boxes unclear how original points contribute final descriptor. This paper proposes new multimodal fusion method generate cloud registration by considering and Specifically, novel attention-fusion module designed extract weighted extraction. In addition, we propose an interpretable explain neural network visually showing contributing We use descriptor's channel value as loss backpropagate target layer consider gradient significance of this moves one step further explainable deep learning in task. Comprehensive experiments 3DMatch, 3DLoMatch KITTI demonstrate that achieves accuracy improves distinctiveness. also explaining
منابع مشابه
Cloud To Cloud Registration For 3d Point Data
Grant, Darion Shawn. Ph.D., Purdue University, December 2013. Cloud To Cloud Registration For 3D Point Data. Major Professors: James Bethel and Melba Crawford. The vast potential of digital representation of objects by large collections of 3D points is being recognized on a global scale and has given rise to the popularity of point cloud data (PCD). 3D imaging sensors provide a means for quickl...
متن کاملColored Point Cloud Registration Revisited Supplementary Material
As in Section 4.3, this objective is minimized using the Gauss-Newton method. Specifically, we start from an initial transformation T and perform optimization iteratively. In each iteration, we locally parameterize T with a 6-vector ξ, evaluate the residual r and Jacobian Jr at T, solve the linear system in (21) to compute ξ, and use ξ to update T. To compute the Jacobian, we need the partial d...
متن کاملHierarchical Registration Method for Airborne and Vehicle LiDAR Point Cloud
A new hierarchical method for the automatic registration of airborne and vehicle light detection and ranging (LiDAR) data is proposed, using three-dimensional (3D) road networks and 3D building contours. Firstly, 3D road networks are extracted from airborne LiDAR data and then registered with vehicle trajectory lines. During the registration of airborne road networks and vehicle trajectory line...
متن کاملGuaranteed Outlier Removal for Point Cloud Registration with Correspondences
An established approach for 3D point cloud registration is to estimate the registration function from 3D keypoint correspondences. Typically, a robust technique is required to conduct the estimation, since there are false correspondences or outliers. Current 3D keypoint techniques are much less accurate than their 2D counterparts, thus they tend to produce extremely high outlier rates. A large ...
متن کاملChallenging data sets for point cloud registration algorithms
The number of registration solutions in the literature has bloomed recently. The iterative closest point, for example, could be considered as the backbone of many laser-based localization and mapping systems. Although they are widely used, it is a common challenge to compare registration solutions on a fair base. The main limitation is to overcome the lack of accurate ground truth in current da...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE robotics and automation letters
سال: 2022
ISSN: ['2377-3766']
DOI: https://doi.org/10.1109/lra.2022.3214789